A comparative study of mouse liver proteins arylated by reactive metabolites of acetaminophen and its nonhepatotoxic regioisomer, 3'-hydroxyacetanilide.

نویسندگان

  • T G Myers
  • E C Dietz
  • N L Anderson
  • E A Khairallah
  • S D Cohen
  • S D Nelson
چکیده

Acetaminophen (4'-hydroxyacetanilide), a widely used analgesic/antipyretic drug, is hepatotoxic in large doses, whereas the m-hydroxy isomer of acetaminophen, 3'-hydroxyacetanilide, is not hepatotoxic. Both are oxidized by mouse liver cytochromes P-450 to reactive metabolites that bind covalently to hepatic proteins. Because previous studies have shown that peak levels of liver protein adducts formed after the administration of each of these compounds to mice are nearly equivalent, and because liver protein adduct formation correlates with hepatotoxicity caused by acetaminophen in mice, we investigated the abundance and patterns of protein adducts formed by acetaminophen and its regioisomer for significant differences. Hepatotoxic doses of acetaminophen to mice significantly altered the abundances of several liver proteins 2 h after dosing as revealed by densitometric analysis of two-dimensional electrophoretic patterns of these proteins. The same analysis after the administration to mice of 3'-hydroxyacetanilide indicated that this nonhepatotoxic regioisomer of acetaminophen caused several similar changes in protein patterns, but also revealed some significant differences. Binding of radiolabeled acetaminophen and 3'-hydroxyacetanilide to hepatic proteins corroborated and extended these results. Two hours after the administration of 14C-labeled analogs of these two compounds to mice, at a time when their extent of total covalent binding to hepatic proteins is approximately equivalent, there are many similarities but also some differences in selectivity of proteins that are adducted, as revealed by both one-dimensional and two-dimensional gel electrophoresis followed by phosphorimage analysis of radiolabel bound to protein bands. Moreover, protein adducts formed from 3'-hydroxyacetanilide were found to be less stable than those formed from acetaminophen under the conditions of electrophoretic analysis. Furthermore, a comparison of radiodetection and immunodetection of protein adducts formed from acetaminophen with an antibody specific for acetaminophen protein adducts indicates that the antibody detects most of the same proteins that are radiolabeled and that the relative quantitative contribution of various adducts to the overall covalent binding of acetaminophen to proteins is approximately the same by both methods. Thus, 3'-hydroxyacetanilide should prove to be a useful tool to aid in the discrimination of hepatic acetaminophen protein adducts that may be critical or noncritical to survival of hepatocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subcellular binding and effects on calcium homeostasis produced by acetaminophen and a nonhepatotoxic regioisomer, 3'-hydroxyacetanilide, in mouse liver.

Acetaminophen (250 mg/kg) administered intraperitoneally to fasted, phenobarbital-induced mice produced hepatotoxicity. No hepatotoxicity was observed after the administration of the regioisomer 3'-hydroxyacetanilide (600 mg/kg). Similar levels of covalent binding to liver homogenates occurred in mice receiving either acetaminophen or 3'-hydroxyacetanilide at these doses. However, subcellular f...

متن کامل

Immunochemical comparison of 3'-hydroxyacetanilide and acetaminophen binding in mouse liver.

The hepatotoxicity of the analgesic acetaminophen is believed to be mediated by covalent binding to critical proteins. Radiolabeled 3'-hydroxyacetanilide, a regioisomer of acetaminophen, covalently binds to proteins at levels similar to those of acetaminophen, but without toxicity. Covalent binding has recently been detected by Western blot to a 50-kDa microsomal protein that comigrated with CY...

متن کامل

p53 Contributes to Differentiating Gene Expression Following Exposure to Acetaminophen and Its Less Hepatotoxic Regioisomer Both In Vitro and In Vivo

The goal of the present study was to compare hepatic toxicogenomic signatures across in vitro and in vivo mouse models following exposure to acetaminophen (APAP) or its relatively nontoxic regioisomer 3'-hydroxyacetanilide (AMAP). Two different Affymetrix microarray platforms and one Agilent Oligonucleotide microarray were utilized. APAP and AMAP treatments resulted in significant and large cha...

متن کامل

Free-radical metabolites of acetaminophen and a dimethylated derivative.

The oxidation of acetaminophen (4'-hydroxyacetanilide) to the corresponding N-acetyl-p-benzoquinone imines by plant and mammalian peroxidases is discussed. The acetaminophen free radical (N-acetyl-4-aminophenoxyl) has been reported as an intermediate. It is very reactive and forms melanin-like polymeric products. Application of a fast-flow system makes it possible to detect the transient specie...

متن کامل

High Frequency Electromagnetic Field Induces Lipocalin 2 Expression in Mouse Liver

Objective(s) Neutrophil gelatinase-associated lipocalin (NGAL/Lcn2), comprise a group of small extracellular proteins with a common P-sheet-dominated 3-dimensional structure. In the past, it was assumed that the predominant role of lipocalin was acting as transport proteins. Recently it has been found that oxidative stress induces Lcn2 expression. It has been also proved that electromagnetic f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical research in toxicology

دوره 8 3  شماره 

صفحات  -

تاریخ انتشار 1995